

Hartcran House, 231 Kenton Lane, Harrow, Middlesex, HA3 8RP, England Tel: +44 (0) 20 8909 9595, Fax: +44 (0) 20 8909 2233, www.radiometrix.com

HMT2-458-5

PRELIMINARY

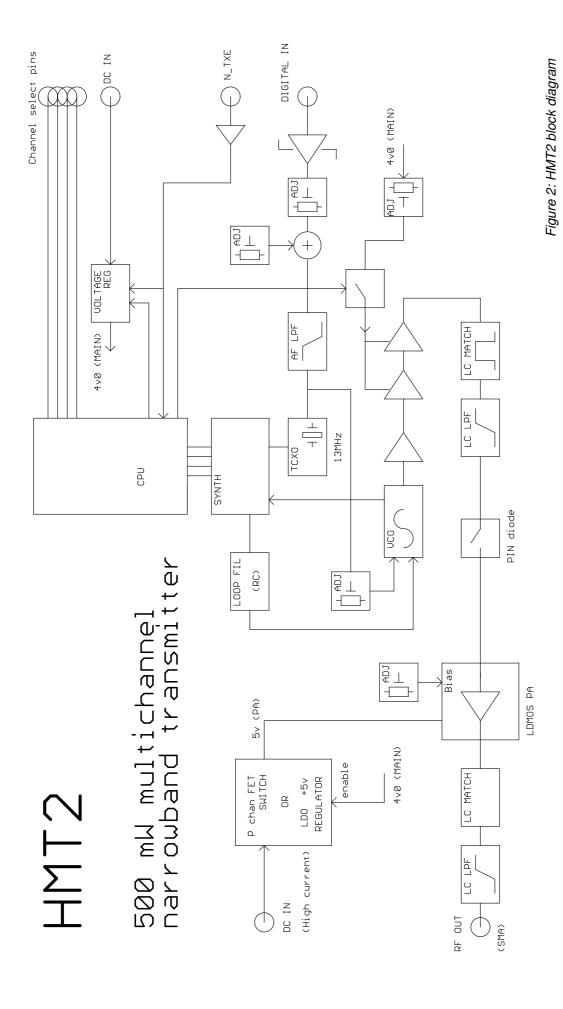
Issue 1, 31th March 2016

NBFM Multi-channel 500mW UHF Transmitter

The HMT2 transmitter module offers a 500mW RF output in the UK 458MHz. This unit is ideally suited to applications where existing lower powered transmitters provide insufficient range. The HMT2 transmitter is a multi-channel, narrowband design, suitable for licensed and unlicensed UHF allocations. Together with a matching LMR2 receiver a one-way radio data link can be achieved over a distance of well over 5km (with a suitable antenna).

Figure 1: HMT2-458-5

Features


- Conforms to EN 300 220-3 and EN 301 489-3
- PLL Synthesized transmitter with TCXO
- Data rates up to 5 kbps for standard module
- Usable range over 5km
- Fully screened
- User configurable via RS232 interface
- Low power requirements

Applications

- Handheld terminals
- On-site paging system (e.g. Nurse call pagers)
- Heavy vehicle/machine remote controls
- Data loggers
- Industrial telemetry and telecommand
- High-end security and fire alarms
- Vehicle data up/download

Technical Summary

- Operating frequency: 458.525 459.1MHz (standard)
 - or 458.8 459.3MHz and 461.3MHz (for paging)
- 16 parallel / 32 serial select channels
- Transmit power: +27dBm (500mW) nominal
- Supply range: +5V regulated (or +6 +9V for -R version)
- Current consumption: 350mA transmit, <5μA standby
- Data bit rate: 5kbps max. (standard module)
- Size: 66 x 23 x 9 mm

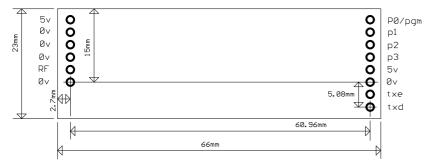


Figure 3: HMT2 Footprint (Top) view through can

User Interface

Pin description

Pin	Name	Function	
1a	Vcc	5v regulated power supply (high current feed)	
2a	0V	Ground	
3a	0V	Ground	
4a	0V	Ground	
5a	RF input	50Ω RF input from the antenna	
6a	0V	Ground	
1b	P0/PGM	Channel select LSB / Serial programming (inverted logic level rs232)	
2b	P1	Channel select	
3b	P2	Channel select	
4b	P3	Channel select MSB	
5b	Vcc	5v input (low current feed)	
6b	0V	Ground	
7b	TXE	Transmitter enable. Low = ON, open = off. 100K pullup to Vcc	
8b	TXD	DC coupled input for 3V CMOS logic. R_{in} =47k Ω	

Notes:

- 1. Serial programming is by an inverted, cmos logic level, 2400 baud RS232 datastream applied to the P0 pin.
- 2. Channel select inputs have pullups (50K) to 4v internal rail. Do not exceed 4v logic levels on this port.
- 3. Channel select inputs are active low
- 4. TXE has a 100K pullup to Vcc
- 5. All pins are on an 0.1" grid
- 6. Pin 1a supplies the power amplifer. This pin requires a clean, well regulated 5v supply at up to 300mA
 - Pin 5b supplies the remainder of the module. It can tolerate 4.1-9v and draws up to 100mA
- 7. A version of the design is available with an LDO regulator in the PA feed.
 In this case pin 1a can be supplied from a 6-9v rail too
- 8. Pinout is compatible with FPX3, SHX1 and UHX1 transceivers, although the case is narrower and the pins associated with receive functionality are absent.

Serial interface commands

The internal firmware for HMT2 has two versions.

Version 1 is IDENTICAL to our standard LMT2-458-5 (100mW) in all respects

Version 2 is specific to paging applications.

Version 1: programming instruction

2400 baud RS232. 8 bit data, no parity, 1 start bit, 1 or 2 stop bits.

Serial data is sent to the unit on one of the parallel channel select pins (P0). It is very important that the unit does not 'decode' switch bounce in ordinary operation as a command string, or spurious re-writing of the e2prom will result. For this reason the user must send the 16 character string ENABLESERIALMODE (followed by a carriage return) to fully enable the serial command mode before sending any of the command strings listed below. Command mode is disabled on power down, or on reception of a # character. To successfully program the unit, n txe must be 'low' (active) to enable the unit.

GOCHAN aa	Serially select channel aa, where aa is ch0 to ch31	
LOAD aa nnnnn	Set value of N register for channel aa, where aa is Channels 0 to 31	
SETPAR	Channel selected by 4 bit parallel inputs (ch0 to ch15 only)	
SETSER	Channel selected by most recent GOCHAN operation	
RVALUE rrrr	Set value for R register	
SINGLE nnnnn	Set value of N for single channel operation.	
	N value NOT stored in EEPROM	
<cr></cr>	Process entry	
/	Clear all buffers	
#	Disable command mode	

aa = a two digit channel number from 00 to 31 nnnnn = synthesizer N register value (up to 65535) rrrr = synthesizer R register value (up to 16383)

$$N = \frac{f_{RF}}{f_{Channelspacing}} = \frac{458.525MHz}{25kHz} = 18341$$

$$R = \frac{f_{TCXO}}{f_{channel spacing}} = \frac{13MHz}{25kHz}$$
, So R=520

Note: A pause of at least 50ms must be allowed between command strings (EEPROM programming time). SINGLE mode does not store the N value in EEPROM. Therefore the unit is inoperative after a power down until either another valid SINGLE command is received, or mode is changed by a GOCHAN, SETPAR or SETSER command. SINGLE mode is intended for frequency agile applications.

Version 2: programming instruction

The HMT2 provides 32 individually programmable channels

(As supplied, CH00-CH20 are programmed to 458.8 - 459.3MHz, and channels 21-31 are all set to 461.3MHz)

GOCHAN aa	Serially select channel aa, where aa is ch0 to ch31	
TEMP aa	select channel aa, but revert to last GOCHAN value on next key-up	
LOAD aa nnnnn	Set value of N register for channel aa, where aa is Channels 0 to 31	
RVALUE rrrr	Set value for R register	
<cr></cr>	Process entry	
/	Clear all buffers	

aa = a two digit channel number from 00 to 31 (and it MUST be two digits, so use "01" instead of "1".etc) nnnnn = synthesizer N register value (up to 65535) rrrr = synthesizer R register value (up to 16383)

$$N = \frac{f_{\mathit{RF}}}{f_{\mathit{Channel spacing}}} = \frac{458.800 \mathit{MHz}}{25 \mathit{kHz}} = 18352$$

$$R = \frac{f_{TCXO}}{f_{channelspacing}} = \frac{13MHz}{25kHz}$$
, So R=520

Notes:

- 1. A 2400 baud cmos level 'inverted RS232 format' (1 start bit, 8 data, 1 or 2 stop bits, no parity) is used.
- 2. The unit echos all bytes sent back on the P3 output.
 Following any successful operation, the bytes OK <cr>> are also sent back, when the unit is ready.
- 3. To successfully program the unit it must be in active state (txe low), so provision should be made to force the unit into this state while programming (the third pin on the auxiliary programming connector does this).
- 4. All commands except the non-volatile TEMP as initiate an e2prom programming sequence. 50mS must be left before the next command is sent.
- 5. These units employs a sub-set of the programming commands used by standard LMT module. (As the P0 pin is dedicated to serial communication only, the 'ENABLESERIALMODE' command string is NOT required.)

Condensed specifications

Frequency	As supplied:	
- ·	Version 1: 458.525 - 459.1MHz (25kHz steps)	
	Version 2: 458.8 - 459.3MHz (25KHz steps) and 461.3MHz	
Frequency stability	+/- 1.5kHz	
Channel spacing	25kHz	
Number of channels	16 channels controlled by parallel port	
	32 channels controlled via RS232 interface	
Transmit	·	
Output power	+27dBm (500mW) ±1dB	
TX on switching time	30 ms from TXE transition	
Modulation type	FSK (F3D)	
TX modulation bandwidth	DC – 3kHz (3v CMOS compatible DATA input)	
Adjacent channel TX power	<-37dBm	
TX spuri	<-36dBm (no output in standby)	
Spurious radiations	Compliant with ETSI EN 300 220-3 and EN 301 489-3	
Inputs	data (CMOS/TTL compatible)	
Supply Voltage	+5V regulated (or 6-9V in –R version)	
Current	350mA nominal transmit	
	<5μA standby (TXE high or floating)	
Interface	<u> </u>	
User	8 pin 0.1" pitch single row header	
RF	6 pin 0.1" pitch	
Recommended PCB hole size	1.2mm (min.)	
Size	66 x 23 x 9mm	
Operating temperature	-20 to +55 °C (Storage -30 to +70 °C)	
Intended approval	ETSI Radio standard EN 300 220-3 and EMC standard EN 301 489-3	

Ordering Information:

Part No.	Notes	Frequency band
HMT2-458-5	version 1	458.525 - 459.1MHz
HMT2-460-5	version 2	458.8 - 459.3MHz and 461.3MHz
HMT2-458-5-R	version 1; regulator version	458.525 - 459.1MHz
HMT2-460-5-R	version 2; regulator version	458.8 - 459.3MHz and 461.3MHz
Matching Receiver		
LMR2-458-5 (version 1)		458.525 - 459.1MHz
LMR2-460-5 (version 2)		458.8 - 459.3MHz and 461.3MHz

Radiometrix Ltd

Hartcran House 231 Kenton Lane Harrow, Middlesex HA3 8RP ENGLAND

Tel: +44 (0) 20 8909 9595 Fax: +44 (0) 20 8909 2233 sales@radiometrix.com www.radiometrix.com

Copyright notice

This product data sheet is the original work and copyrighted property of Radiometrix Ltd. Reproduction in whole or in part must give clear acknowledgement to the copyright owner.

Limitation of liability

The information furnished by Radiometrix Ltd is believed to be accurate and reliable. Radiometrix Ltd reserves the right to make changes or improvements in the design, specification or manufacture of its subassembly products without notice. Radiometrix Ltd does not assume any liability arising from the application or use of any product or circuit described herein, nor for any infringements of patents or other rights of third parties which may result from the use of its products. This data sheet neither states nor implies warranty of any kind, including fitness for any particular application. These radio devices may be subject to radio interference and may not function as intended if interference is present. We do NOT recommend their use for life critical applications.

The Intrastat commodity code for all our modules is: 8542 6000

R&TTE Directive

After 7 April 2001 the manufacturer can only place finished product on the market under the provisions of the R&TTE Directive. Equipment within the scope of the R&TTE Directive may demonstrate compliance to the essential requirements specified in Article 3 of the Directive, as appropriate to the particular equipment.

Further details are available on The Office of Communications (Ofcom) web site: http://www.ofcom.org.uk/radiocomms/ifi/

Information Requests
Ofcom
Riverside House
2a Southwark Bridge Road
London SE1 9HA

Tel: +44 (0)845 456 3000 or 020 7981 3040

Fax: +44 (0)20 7783 4033

information.requests@ofcom.org.uk

European Radiocommunications Office (ERO) Peblingehus

Nansensgade 19 DK 1366 Copenhagen Tel. +45 33896300 Fax +45 33896330 ero@ero.dk

www.ero.dk