HNM2
500mW CAT1 Radio Modem
USER MANUAL

Radiometrix Ltd
Hartoran House, 231 Kenton Lane, Harrow, Middlesex, HA3 8RP, England
Tel: +44 (0) 20 8909 9595, Fax: +44 (0) 20 8909 2233, www.radiometrix.com
Contents

1. Introduction ... 3

Technical Specification: .. 3

2. Connection Details: ... 4
 2.1 PCB Layout ... 4
 2.2 Power Connections .. 4
 2.3 Serial Ports .. 5
 2.4 RS485 - 2 Pole Phoenix Connector 5
 2.5 LED indications .. 6

3.0 Programming the Module ... 7
 3.1 Procedure to enter command Mode 7
 3.2 Procedure to Access AT Commands 7

4.0 Data Communications .. 7

Modes of Operation: ... 7

4.1 Normal mode ... 8
 4.1.1 Setup HyperTerminal for Data communication 8

4.2 Repeater Mode: .. 9
 4.2.1 Instruction to configure Repeater mode 10
 4.2.1.1 Configure transmitter module: 10
 4.2.1.2 Configure receiver module: 10
 4.2.1.3 configure Repeater module 11

Appendix A .. 144
1. Introduction
The HNM2 radio modem offers a 500mW RF output 19200 data link with RS232, RS485 or USB interface. It meets the ETSI Category 1 high performance receiver specification to be used where the operation of a SRD may have inherent safety of human life Implications

Features

- Standard 458MHz (UK), 869MHz (EU)
- Available from 160MHz to 915MHz
- 12.5/25kHz Narrow Band Multichannel
- Data rates up to 19200kbps
- ETSI EN 300 220-1 Category 1 High performance level receiver
- Point-to-Point, Point-to-Multipoint
- Store and Forward Repeater Mode with Dual Addressing to extend operating range
- Mini USB Type B, RS232 DE9F sockets, RS485 Terminal Block and SPI interfaces
- Range Test Mode

Technical Specification:

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>CH0 : 458.525, CH1 : 458.550,.........CH15 : 458.900MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of manually selectable channels Using channel selector</td>
<td>16 (0 - 15)</td>
</tr>
<tr>
<td>Channel Spacing Frequency</td>
<td>25 KHz (dependent on data rate)</td>
</tr>
<tr>
<td>Modulation</td>
<td>2-GFSK, 4-GFSK</td>
</tr>
<tr>
<td>RF baud Rate</td>
<td>300, 600, 1200, 2400, 4800, 9600, 19200 bps</td>
</tr>
<tr>
<td>RF power</td>
<td>+27dBm (500 mW)</td>
</tr>
<tr>
<td>Data Interface</td>
<td>RS232, RS485, USB</td>
</tr>
<tr>
<td>Serial Data baud rate</td>
<td>600, 1200, 2400,4800, 9600, 19200, 38400bps.</td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>6 Vdc - 16 Vdc</td>
</tr>
</tbody>
</table>
2. Connection Details:

2.1 PCB Layout

2.2 Power Connections:
HNM2 requires DC supply voltage range from +6Vdc to +16Vdc. Power can be supplied through DC jack or mini USB port.
2.3 Serial Ports

HNM2 has serial ports that provides the data connection between HNM2 Modem and host devices.

There are two ways to enable the Serial port In HNM3.

USB to serial port – To enable this connection USB EN jumper pin should be connected.

9 Pin Female D type Connector – To Enable this connection, RS232 EN pin should be connected

Note: At any time ONLY One of these connection should be used

2.4 RS485 - 2 Pole Phoenix Connector

This connector is used for R485. To enable the RS485 mode RS485 EN pins should be linked by a jumper connection.
2.5 LED indications

Tri color LED is used to indicate Internal Functionalities of the Modem

<table>
<thead>
<tr>
<th>LED</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>White LED</td>
<td>To indicate Module Power up</td>
</tr>
<tr>
<td></td>
<td>In normal mode, While Power-Up the modem the White LED will be ON for 2 seconds and then will go OFF</td>
</tr>
<tr>
<td></td>
<td>In P2P mode, White LED will be blinking 3 times and will go OFF</td>
</tr>
<tr>
<td>Red LED</td>
<td>To indicate Data transmission</td>
</tr>
<tr>
<td></td>
<td>Red LED will be blinking for Each RF Data Packet Transmission</td>
</tr>
<tr>
<td>Green LED</td>
<td>To indicate Data reception</td>
</tr>
<tr>
<td></td>
<td>While RF data Reception, the Green LED will be blinking</td>
</tr>
<tr>
<td>Blue LED</td>
<td>To indicate Command mode</td>
</tr>
<tr>
<td></td>
<td>The Blue LED will be ON till exit from Command mode</td>
</tr>
<tr>
<td>Yellow LED</td>
<td>To indicate RXFIFO overflow error</td>
</tr>
<tr>
<td></td>
<td>Yellow LED will be ON if RF receive FIFO error occurs.</td>
</tr>
<tr>
<td>Cyan LED</td>
<td>To indicate Repeater Function</td>
</tr>
<tr>
<td></td>
<td>If the Module configured as repeater, The Cyan LED will be blinking While forward the data to the Destination</td>
</tr>
<tr>
<td>Violet LED</td>
<td>To indicate Queue Full status</td>
</tr>
<tr>
<td></td>
<td>It will be blinking if the Internal data buffer becomes full</td>
</tr>
</tbody>
</table>
3.0 Programming the Module

This product has the feature to change the RF modem parameters. RF Parameters can be changed according to the Communication requirements. Parameters can be changed through command mode. In order to do this you need a terminal program like “Hyperterminal” or “Terraterm”.

AT Commands:

The command mode is used to read and update the modem configuration registers using AT command

In command mode, the radio is inhibited (transmission and reception), excepted when using test commands.

3.1 Procedure to enter command Mode

Send “+++” sequence from HyperTerminal to enter the command mode, when entering command mode ‘command mode active’ message will be displayed on hyper terminal.

To exit from Command Mode, issue “ATE<CR>” sequence from HyperTerminal.

3.2 Procedure to Access AT Commands

1. Enter command mode

2. Enter the AT command of corresponding Parameter, the Parameters are listed below

3. Carriage return (<CR>) should be given after writing each AT commands.

Example:

To change the Frequency of RF modem

Send this ATF=458.525 <CR>

Modem will return

Freq =458.52500

OK

All AT commands and parameters Explained in Appendix A.0. Data Communications

Modes of Operation:

This modem supports two modes of operations

1. Normal Mode

2. Repeater Mode
4.1 Normal mode

In normal mode of operation, this modem acts as transceiver. In this mode, there is no need to initiate addressing of the modem. The communication is always half-duplex. When the transceiver is sending a radio packet, it is not able to decode any incoming radio packet. User can transmit and receive the data through hyper terminal. By default the modem is in Normal mode.

In Idle state the transceiver is waiting for Serial data on Serial port and RF data on Radio link. Once the data is detected on Serial port, the data is transferred to the RF module for RF communication. If the data is detected on RF link, it is transferred to Serial port.

4.1.1 Setup HyperTerminal for Data communication

1. Open hyper terminal on PC
2. Open baud rate settings menu, Select com port and set the baud rate as 9600 (Default)

3. UART data format
 - Data bits: 8 bits
 - Stop Bit: 1 bit
 - Parity: None
4.2 Repeater Mode:

For Long range data transmission, we can configure the modem as repeater. In repeater Mode, we have to address the each modem with source and destination addresses.

For data communication, Modems has to be configured with three configuration settings

1. Transmitter Configuration
2. Receiver configuration
3. Repeater configuration

To enable this repeater mode, the mode is changed to Normal to P2P (Point to point Network) mode

Procedure to change P2P mode

Enter command mode

Send “+++” from HyperTerminal to enter the command mode, when entering command mode ‘command mode active’ message will be displayed on hyper terminal.

Send ATP2P = 1<CR> command

Modem will return “OK<CR>”
4.2.1 Instruction to configure Repeater mode

4.2.1.1 Configure transmitter module:

1. Enter command mode
2. Enter transmit address TX1.
 Command format:
 "ATTX1=12" and press enter key (<CR>), ‘OK’ message will be displayed as response.
3. Enter receive address RX1.
 Command format:
 "ATRX1=21" and press enter key (<CR>), ‘OK’ message will be displayed as response.
4. Exit from command mode
 Command format:
 “ATE” and press enter key (<CR>), ‘OK’ message will be displayed as response

4.2.1.2 Configure receiver module:

1. Enter command mode
 Send “+++” from HyperTerminal to enter the command mode, when entering command mode ‘command mode active’ message will be displayed on hyper terminal.
2. Enter transmit address TX1.
 Command format:
 “ATTX1=21” and press enter key, ‘OK’ message will be displayed as response.
3. Enter receive address RX1.
 Command format:
 “ATRX1=12” and press enter key, ‘OK’ message will be displayed as response.
4. Exit from command mode
 Command format:
 “ATE” and press enter key, ‘OK’ message will be displayed as response
5. Now both modules can send and receive data through hyper terminal
Point To Point without Repeater

Transmitter function:

When user send the data from hyper Terminal, transmitter will transmit the data with transmit address of TX1.

Receiver function:

Receiver receives the data only from the address entered in the RX1 address

Note: All the Addresses Range is 0 – 9999;

Point to Point With Repeater

4.2.1.3 configure Repeater module

1. Enter command mode

2. Enable the repeater mode

 Command format:
 “ATRPE=1” and press enter key to enable repeater mode, ‘OK’ message will be displayed as response and it will ask for TX1 TX2, RX1 and RX2 addresses.

3. Enter reverse transmit address TX1

 Command format:
 “ATTX1=21” and press enter key, ‘OK’ message will be displayed as response

4. Enter reverse receive address RX1

 Command format:
 “ATRX1=32” and press enter key, ‘OK’ message will be displayed as response

5. Enter Forward transmit address TX2

 Command format:
 “ATTX2=23” and press enter key, ‘OK’ message will be displayed as response
6. Enter forward receive address RX2

Command format:
“ATRX2=12” and press enter key, 'OK' message will be displayed as response

7. Exit from command mode

Command format:
“ATE” and press enter key to exit from command mode

8. Now the repeater is ready to repeat the data

Repeater function:

<table>
<thead>
<tr>
<th>Modem1</th>
<th>Repeater</th>
<th>Modem2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX1</td>
<td>TX1</td>
<td>TX1</td>
</tr>
<tr>
<td>12</td>
<td>21</td>
<td>32</td>
</tr>
<tr>
<td>RX1</td>
<td>RX1</td>
<td>RX1</td>
</tr>
<tr>
<td>21</td>
<td>32</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>TX2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RX2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

9. Change modem2 and RX1 address by this procedure

Enter command mode
Set TX1 "ATTX1=32"
Set RX1 "ATRX1=23"

Exit from command Mode

Now the receiver is ready to receive data

10. If the repeater receives message from modem1 TX1 (12) address, it will forward the message to the modem 2 with the transmit address of 23.
11. Modem 2 will receive the data, and the data will be displayed on hyper terminal

12. If the repeater receives message from Modem2 TX1 (32) address, it will forward the message to the modem 1 with transmit address of 21.

13. Modem1 will receive the data, and the data will be displayed on hyper terminal

14. User can view the received data on hyper terminal.

15. User can read the address of TX1,RX1,TX2,RX2 using AT command

 Send “ATAR?” to read the address

16. User can disable the repeater function by sending repeater disable command

 Enter command mode

 Send “ATRPE=0” and press enter key to disable repeater mode.

 Exit from command mode

17. User can view the received data on repeater’s hype terminal
Appendix A

All AT commands listed below. **Note that HNM2/LNM2H are frequencies in the 400MHz range and HNM3/LNM3 are in the 800-900 MHz Range.**

LNM2H/LNM3H can be configured using serial AT Commands in Inverted RS232 (UART) format at 9600bps, 8 data bits, No Parity, 1 stop bit, No Flow control at 5V TTL level. Each command should be terminated with Enter Key / Carriage Returned (0x0D) to execute.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AT commands</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Mode</td>
<td>Enter “+++”</td>
<td>To enter command mode</td>
</tr>
<tr>
<td></td>
<td>“Command mode active”</td>
<td></td>
</tr>
<tr>
<td>ATE<CR> OK</td>
<td></td>
<td>Save parameters and Exit Configuration Mode</td>
</tr>
<tr>
<td>ATF? 458.525 OK</td>
<td></td>
<td>Read Center frequency of RF modem</td>
</tr>
</tbody>
</table>

UART baud Rate

- **ATU = XX**
 - Allowed baud rate Range
 - 300,600,1200,2400,4800,9600,19200,38400
 - **Ex:**
 - ATU=9600<CR>
 - Change Terminal Baud Rate to Continue...
 - After, Use Exit 'ATE<CR>' to store baud rate permanently
 - OK

- **ATU?<CR> 9600 OK**
 - Read Serial Baud Rate

RF received signal strength

- **ATR?**
 - RSSI value continuously displays on hyper terminal
 - To exit from the command Send ESC(0x1B) from terminal

- Read Received signal strength
| **Append RSSI status** | ATRA =xx
1 –Enable
0 – Disable
EX: ATRA=1<CR>
OK | Enable/Disable Append RSSI with Data
After this command each packet received with Rssi value
HELLO9C
Received Packet ‘HELLO’ and its RSSI value 0x9C (156) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ATRA?<CR></td>
<td>1</td>
<td>Read the Status of append RSSI</td>
</tr>
</tbody>
</table>
| **Channel Selection Mode** | ATRCHM =x
x = 0 - Hardware Switch
x= 1 - AT command mode
EX: ATRCHM =0<CR>
Channel Selection By Hardware
OK
ATRCM=1<CR>
Channel Selection By AT Command
OK | Channel selection by AT Commands or Hardware switch(Hex switch) |
| ATRCM?<CR> | Channel Selection By Hardware/AT commands
OK | Read channel selection mode |
| **Channel Selection** | ATCH=xx
xx- channel no (0 to 15)
EX: ATCH = 2<CR>
Channel 2 is selected
OK | Write channel no from (0 to 15) |
| ATCH?<CR> | channel 2 is selected
OK | Read current channel no |
| Channel and Frequency | ATC= xx,yyy.yyy
| xx – channel no (00 to 15)
| yyy.yyy – frequency
| 433.xxx - Band
| 868.xxx - Band
| 164.xxx - Band
| Ex:
| ATC=01,458.12345<CR>
| OK | Write frequency for the corresponding Channel |
| ATC?<CR>
| 0 – 458.52500
| 1 - 458.12345
| 2 - 458.57500
| .
| .
| .
| 15-458.90000
| OK | Read each channel frequency |
| RF baud Rate | ATRD =xx
| xx –RF baud rate
| RF baud Rate-
| 1200,2400,4800,9600,19200
| EX:
| ATRD=1200<CR>
| OK | Write RF baud rate
| 19200 -4 level GFSK 25kHz bandwidth 5kHz Deviation (Default)
| 9600 - 4 level GFSK 25kHz bandwidth 5kHz Deviation
| 4800- 2 level GFSK 20kHz bandwidth 4kHz Deviation
| 2400- 2 level GFSK 12.5kHz bandwidth 4kHz Deviation
| 1200 -2 level GFSK 12.5kHz bandwidth 4kHz Deviation
| 600 - 2 level GFSK 12.5kHz bandwidth 4kHz Deviation
| 300 - 2 level GFSK 12.5kHz bandwidth 4kHz Deviation
| Reducing RF Baud Rate increases Receive sensitivity, hence operating range. |
| **Packer Error Rate** | ATRD?<CR>
1200
OK | Read RF baud rate |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ATPER<CR></td>
<td>Good=1,Bad=0</td>
<td>Read Packet error status</td>
</tr>
<tr>
<td></td>
<td>It returns No of good and bad packet</td>
<td></td>
</tr>
<tr>
<td>Press "ESC" to exit from this mode</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **UART Hardware Flow Control** | ATFCD =x
X - 0 - Disable
X - 1 - Enable
EX:
ATFCD =1<CR>
OK | Enable/Disable UART hardware flow control (CTS/RTS) |
|-------------------------------|--|--|
| **ATFCD? <CR>** | 1
OK | Read current status of flow control |
| **Range Test** | ATRG = xx
xx - mode
0 - Range Tx
1 - Range Rx
2 - Range Master
3 - Range Slave
Press "ESC" to exit from Range test mode | check the RF modem communication Range
It can be used for site survey and range testing. |
| **ATRG=0 <CR>** | Range test Tx started | Transmitter sends packet every 500ms and prints "Tx succeed" |
| **ATRG=1 <CR>** | Range test Rx started | Acts as receiver, if good packet received prints "Rx succeed" |
| **ATRG=2 <CR>** | Range test Master started | Bi directional communication acts as master
Transmits to Slave and displays if valid packet is received from Slave |
| Transmitter 1 address | ATTX1=xx
xx - 4 digit address
EX:
ATTX1=21<CR>
Response
ATX1=21
ARX1=XX
ATX2=XX
ARX2=XX
No of repeater =xx
Repeater disabled/Enabled
P2P mode enabled/disabled
OK<CR> | Write Transmitter 1 address for Repeater mode
In Dual Addressing Mode, This address will be accept by next repeater(RX1 or RX2/receiver (Receiver must have this address in RX1)

| Receiver 1 Address | ATRX1=xx
xx - 4 digit address
EX:
ATRX1=32<CR>
Response
ATX1=21
ARX1=32
ATX2=XX
ARX2=XX
No of repeater =xx
Repeater disabled/Enabled
P2P mode enabled/disabled
OK | Write Receiver 1 address for Repeater mode
In Dual addressing mode , This address will be the transmit address of next repeater(TX1) transmitter must have this address in transmit address (TX1)

| Transmitter 2 address | ATTX2 =xx
xx - 4 digit address
EX:
ATTX2=23<CR>
Response
ATX1=21
ARX1=32
ATX2=23
ARX2=XX
No of repeater =xx
Repeater disabled/Enabled
P2P mode enabled/disabled | Write Transmitter 2 address for Repeater mode
In dual addressing , this address will be the receive address of next repeater(RX2) |
<table>
<thead>
<tr>
<th>Receiver 2 Address</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATRX2=xx
xx - 4 digit address</td>
<td>Write Receiver 2 address for Repeater mode</td>
</tr>
<tr>
<td>EX:
ATRX2=12<CR></td>
<td>In dual addressing, this address will be the transmit address of transmitter (TX1)/repeater (TX2)</td>
</tr>
<tr>
<td>Response
ATX1=21
ARX1=32
ATX2=23
ARX2=12
No of repeater =xx
Repeater disabled/Enabled
P2P mode enabled/disabled</td>
<td>OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P2P mode</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP2P=xx
1 – Enable 0 – disable
ATP2P=1</td>
<td>Enable/Disable P2P mode</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P2P parameter</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATAR? <CR></td>
<td>Read all P2P parameters</td>
</tr>
<tr>
<td>It will return
Transmitter 1 address
Transmitter 2 address
Receiver 1 Address
Receiver 2 Address
No of repeaters
Repeater status
P2P mode status
ATX1 = xx
ARX1 =xx
ATX2 = xx
ARX2 =xx
No of repeater =xx
Repeater Enabled
P2P mode Enabled</td>
<td></td>
</tr>
</tbody>
</table>
| **Unicast/Broadcast Transmission** | ATDEU=xx
xx -4 digit address | Write Address Of Destination for Unicast transmission.
In this unicast transmission User can change the unicast address dynamically without storing in eeprom |
| **ATDEU=FF** | Initiate the Broadcast Transmission |
| **Factory Default settings** | ATFACT<CR>
OK | Restore RF factory default settings |
| | ATDEF?<CR>
Channel = 0
RF Frequency = 458.52500
Packet length = Variable Packet Length mode
Rssi Append Status = 0
Uart Baud Rate = 9600
RF Power = 15
RF Modulation = 4-GFSK
RF BandWidth = 25000
RF BaudRate = 19200
RF Channel Spacing = 25000
Manchester State = 0
Uart Flow Control = 0
Packet CCA Threshold = 0
Deviation = 5000
Data whitening Enable = 1
Rssi_Offset = -107 dBm
OK | Display RF Default settings on HyperTerminal |
| **Firmware version** | ATV?<CR>
VER_3.0.31.0
OK | Read firmware version |
Copyright notice

This product data sheet is the original work and copyrighted property of Radiometrix Ltd. Reproduction in whole or in part must give clear acknowledgement to the copyright owner.

Limitation of liability

The information furnished by Radiometrix Ltd is believed to be accurate and reliable. Radiometrix Ltd reserves the right to make changes or improvements in the design, specification or manufacture of its subassembly products without notice. Radiometrix Ltd does not assume any liability arising from the application or use of any product or circuit described herein, nor for any infringements of patents or other rights of third parties which may result from the use of its products. This data sheet neither states nor implies warranty of any kind, including fitness for any particular application. These radio devices may be subject to radio interference and may not function as intended if interference is present. We do NOT recommend their use for life critical applications.

The Intrastat commodity code for all our modules is: 8542 6000

R&TTE Directive

After 7 April 2001 the manufacturer can only place finished product on the market under the provisions of the R&TTE Directive. Equipment within the scope of the R&TTE Directive may demonstrate compliance to the essential requirements specified in Article 3 of the Directive, as appropriate to the particular equipment. Further details are available on The Office of Communications (Ofcom) web site:

http://www.ofcom.org.uk/radiocomms/ifl/