The UHF Radio Packet Modem (RPM2A) is a low cost intelligent radio packet modem that enables a two way radio network/link to be simply implemented between a number of digital devices. The RPM2A uses addressable data packets with error checking, packet acknowledgements and retransmissions to achieve a reliable transparent wireless data link. Built for ease of use and rapid installation, the serial interface ensures direct connection to microprocessors or to RS232 port via RS232 driver while remote configuration enables post installation setup of the modem.

Features
- Addressable point-to-point
- Point-to-Multipoint and broadcast modes
- Inverted RS232 interface at 5V or 3VCMOS level
- DTE speed 600-115200bps
- Overall throughput: 17kbps with ACK
 28kbps without ACK
- Single 5V or 3V supply
- 15mA during data streaming at maximum rate
- Flow control – Hardware (CTS), None
- Available on 433.92MHz or 434.42MHz
- Usable range up to 300m
- Built-in command line configuration
- Built-in RF link diagnostics
- Remote over-air unit configuration
- Low operating current, Auto standby mode
- Conforms to European ETSI EN 300 220-3 and EN 301 489-3
- Dimensions: 39mm X 23mm X 10mm

Applications
- Telemetry and telecontrol
- EPOS equipment, barcode scanners, belt clip printers, stock control, job allocation
- Remote data acquisition system, data loggers
- In-building, environmental monitoring and control systems
- High-end security and alarm signalling
- Automated Monitoring and Control Systems
- Fleet management, vehicle data acquisition

Evaluation platforms: RPM/SPM Eval kit
INTRODUCTION

The RPM2A is a self-contained Radio Packet Modem module that requires only a simple antenna, 5V supply and a serial I/O port on a host microcontroller or PC.

The module provides all the RF circuits and processor intensive low level packet formatting and packet recovery functions required to inter-connect any number of devices with serial port in a radio network.

A continuous stream of serial data downloaded by a Host microcontroller into the RPM2A serial receive buffer is transmitted by the RPM2A’s transceiver and will “appear” in the serial buffer of the addressed RPM2A within radio range.

1. **FUNCTIONAL DESCRIPTION**

The RPM2A is a connection oriented modem module for sending and receiving serial data via an RF communications link.

The RPM2A handles all necessary protocol related functions of validation and retries to ensure error free and uninterrupted data is sent over the communications link. All data transfers between a pair of RPMs are fully acknowledged, thus preventing the loss of data. Bit coding and checksums are used on the data packets to ensure the validity of the received data at the remote end.
1.1 OPERATING STATES

The RADIO PACKET MODEM has three normal operating states:

- **SHUTDOWN**
- **STANDBY**
- **CONNECTED**

SHUTDOWN
The **SHUTDOWN** state is entered by asserting the **WAKE/DTR** input pin high (Vcc). It effectively forces the RPM2A into a suspended state. Communications cannot be made with the RPM2A in this state. The **WAKE/DTR** pin should be pulled Low by host or connected to 0V to Enable the RPM2A.

STANDBY
Immediately after power up and during normal operation, the RPM2A will automatically enter standby mode where it is waiting for a connection request from a remote RPM2A module.

While in this mode a remote connection request can be received which will place the RPM2A into a connected state allowing it to then start receiving data from the remote unit. The connected host device can also send data to the RPM2A via the serial interface which will force the module to send a connection request to the remote RPM2A module, thus effectively setting up a logical connection between two units and allowing data to be transferred.

CONNECTED
On receipt of a connection request from a remote unit, the RPM2A immediately enters a connected state. This effectively allows the RPM2A modems to start sending and receiving data.

In-coming data is sent to the host via the serial port in the same form as it was given to the remote RPM2A module.

![ZMODEM file send for RPM3_COM2](image)

Figure 4: RPM2A transmitting data at 28kbps during ZMODEM file transfer to a remote RPM2A
2 The Host Interface

2.1 Signals

The connection to the RPM2A is a full duplex serial interface supporting baud rates from 600bps to 115200bps. Additional control signals are provided to assist in flow control, configuration and power saving in the RPM2A.

![Physical dimensions and pinouts](image)

Table: Pinouts

<table>
<thead>
<tr>
<th>Pin name</th>
<th>Pin</th>
<th>Pin Function</th>
<th>In/Out</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF GND</td>
<td>1, 3</td>
<td>RF signal ground</td>
<td>Input or Output</td>
<td>BNC casing/coax braid connection</td>
</tr>
<tr>
<td>RF</td>
<td>2</td>
<td>RF signal</td>
<td>Input or Output</td>
<td>Antenna pin/coax core connection</td>
</tr>
<tr>
<td>RXSELECT</td>
<td>4</td>
<td>Receiver Select</td>
<td>Input or Output</td>
<td>Internal RF Receiver Enable to BIM2A or RF Receiver Active Indicator</td>
</tr>
<tr>
<td>TX SELECT</td>
<td>5</td>
<td>Transmitter Select</td>
<td>Input or Output</td>
<td>Internal RF Transmitter Enable to BIM2A or RF Transmitter Active Indicator</td>
</tr>
<tr>
<td>TXD/AF</td>
<td>7</td>
<td>Transmitted Data or demodulated signal</td>
<td>Input or Output</td>
<td>Transmitted Packetised Data to BIM2A Analogue Demodulated signal from BIM2A</td>
</tr>
<tr>
<td>D3</td>
<td>8</td>
<td>FRPC Data line</td>
<td>NC</td>
<td>Internal data line between RPM and FRPC</td>
</tr>
<tr>
<td>D2</td>
<td>9</td>
<td>FRPC Data line</td>
<td>NC</td>
<td>Internal data line between RPM and FRPC</td>
</tr>
<tr>
<td>SIGNAL</td>
<td>10</td>
<td>Preamble Detect</td>
<td>Output</td>
<td>Valid preamble indicator</td>
</tr>
<tr>
<td>RST</td>
<td>11</td>
<td>FRPC reset</td>
<td>NC</td>
<td>Resets FRPC which also isolates BIM2A</td>
</tr>
<tr>
<td>RXA</td>
<td>12</td>
<td>Receive Acknowledge</td>
<td>NC</td>
<td>RPM to FRPC download Request Acknowledge</td>
</tr>
<tr>
<td>RXR</td>
<td>13</td>
<td>Receive Request</td>
<td>Output</td>
<td>Valid Data packet indicator</td>
</tr>
<tr>
<td>RESET</td>
<td>14</td>
<td>Reset</td>
<td>Input</td>
<td>Hardware reset of the RPM2A</td>
</tr>
<tr>
<td>SETUP</td>
<td>15</td>
<td>Enter Setup</td>
<td>Input</td>
<td>Enter RPM2A configurator after a RESET</td>
</tr>
<tr>
<td>WAKE/DTR</td>
<td>16</td>
<td>Wake or Shutdown</td>
<td>Input</td>
<td>Wakes RPM2A when low, shuts down when high</td>
</tr>
<tr>
<td>TXD</td>
<td>17</td>
<td>Serial transmitted data</td>
<td>Input</td>
<td>Host (DTE) to RPM2A serial transmit data</td>
</tr>
<tr>
<td>RXD</td>
<td>18</td>
<td>Serial Received data</td>
<td>Output</td>
<td>RPM2A to host (DTE) serial received data</td>
</tr>
<tr>
<td>CTS</td>
<td>19</td>
<td>Clear To Send</td>
<td>Output</td>
<td>Hardware flow control of data from host (DTE)</td>
</tr>
<tr>
<td>DEFAULT*</td>
<td>20</td>
<td>Force 9600bps</td>
<td>Input</td>
<td>Force the RPM2A serial interface to 9600bps</td>
</tr>
<tr>
<td>VCC</td>
<td>21</td>
<td>Vcc Supply</td>
<td>Input</td>
<td>+5VDC or +3VDC regulated supply</td>
</tr>
<tr>
<td>GND</td>
<td>6, 22</td>
<td>Ground</td>
<td>-</td>
<td>Supply Ground internally connected to GND</td>
</tr>
</tbody>
</table>

Notes:
1. RXD/TXD lines are true data
2. Active low SETUP, DEFAULT inputs require external 10kΩ pull-up to VCC.
3. Logic levels are 5V CMOS unless 3V variant is used.
4. WAKE pin should be pulled to ground if DTE cannot provide DTR signal
5. TXSELECT, RXSELECT, SIGNAL, RXR, CTS can be connected to LEDs via 1kΩ series resistors
2.2 **Radio Packet Modem Reset**

Reset
The Reset signal is internally pulled up to Vcc via a 10kΩ resistor. A reset aborts any transfers in progress and restarts the RPM2A.

Host driven reset
Minimum low time: 1.0 µs, after reset is released (returned high). The host should allow a delay 1ms after reset for the RPM2A to initialise itself.

2.3 **Host To Radio Packet Mode Data Transfer**
Data is transferred between the RPM2A and the Host using an asynchronous serial protocol. The default protocol settings are 8 data bits, no parity and 1 stop bit (8n1). The baud rate setting for the serial interface is user settable from 600bps to 115200bps.

TXD
Data from the connected host (DTE) is received by the RPM2A through TXD pin.

CTS
A single handshake line, CTS, controls the flow of data into the RPM2A. The serial receive buffer of the RPM2A is 96 bytes deep. The CTS will be asserted High (VCC) by the RPM2A when the receive buffer hits approximately 66% full. It is advisable to limit the number of characters sent to the RPM2A after the CTS control line is asserted. This will help to reduce the possibility of lost data due to internal buffer overruns in the RPM2A. The RPM2A will clear the CTS when the internal serial receive buffer falls below 33% full.

RXD
Upon the RPM2A receiving data from a remote unit, the received data is sent to the connected host (DTE) device through the RXD pin.

2.4 **Entering Radio Packet Modem Configurator**
Configuring the RPM2A is accomplished by using a built-in command line configurator. The configurator is entered by asserting the **Setup** input of the RPM2A while resetting the RPM2A.

Set up
Holding Setup low during a reset cycle will force the modem into the configurator. The state of this input is checked while the RPM2A starts up from either power on or reset.

Host Driven Setup
The Setup pin may either be driven by the host (recommended) to enable host controlled configuration of the RPM2A or pulled up to Vcc via a suitable pull-up resistor (10kΩ).

2.5 **Forcing Default Serial Baud Rate**
Asserting this pin low forces the RPM2A to start-up with a default baud rate of 9600bps, 8 data bits, one stop and no parity.

Default
During a **reset** the **Host** must hold **Default** low to force the RPM2A serial interface to default to 9600bps. This is ideal if the serial baud rate has been forgotten or incorrectly set.

Host Driven Default
The Default pin may either be driven by the host (recommended) or pulled up to Vcc via a suitable pull-up resistor (10kΩ).

2.6 **Forcing Radio Packet Modem into Sleep Mode**
Asserting the **Wake** input high forces the modem into a low power sleep mode. This effectively shuts down the RPM2A and prevents it from sending or receiving any data. It is a method for conserving power when the modem is not required.

Wake / DTr
During normal operation **Wake** pin can be pulled high to force the RPM2A to shutdown into low power sleep mode.

Host Driven Wake
The Wake pin may either be driven by the host (recommended) or pulled Low to 0V.
TECHNICAL SPECIFICATION

<table>
<thead>
<tr>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage</td>
</tr>
<tr>
<td>Operating Current (@10mW)</td>
</tr>
<tr>
<td>ACKMODE ON</td>
</tr>
<tr>
<td>Transmitting</td>
</tr>
<tr>
<td>Receiving</td>
</tr>
<tr>
<td>ACKMODE OFF</td>
</tr>
<tr>
<td>Transmitting</td>
</tr>
<tr>
<td>Receiving</td>
</tr>
<tr>
<td>Auto-Standby</td>
</tr>
<tr>
<td>Power-down</td>
</tr>
</tbody>
</table>

| **Standard Operating frequency** | 433.92MHz |
| **TX spectral bandwidth @ -40dBc** | 250kHz |

| **Operating Temperature** | -20ºC to +70ºC |

| **Configuring options** | Built-in command line configurator |

<table>
<thead>
<tr>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Interface</td>
</tr>
<tr>
<td>Serial Protocol</td>
</tr>
<tr>
<td>Serial Signals</td>
</tr>
<tr>
<td>Power down Control</td>
</tr>
<tr>
<td>Serial Handshaking</td>
</tr>
<tr>
<td>DTE Interface Speed</td>
</tr>
</tbody>
</table>

Air Interface Speed	64kbps
Overall throughput – Acknowledged	17kbps (max)
	3.6kbps (slots)
	1.8kbps (slotsw)
– Unacknowledged	28kbps (max)
	3.6kbps (slots)
	1.8kbps (slotsw)

<table>
<thead>
<tr>
<th>Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
</tr>
<tr>
<td>LO leakage (conducted)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transmitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Power (typical)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Spurious Emissions</td>
</tr>
</tbody>
</table>

Note:
1. RPM2A uses BiM2A (64kbps UHF Wide Band FM) transceiver for its RF interface. RPM2H and RPM2EH are high power variant based on the BiM2H and BiM2EH transceivers respectively. Please refer to BiM2A data sheet for further details on the RF specification.
2. Typical current ratings are given only for the RPM2A based on the BiM2A which consumes 14mA on transmit and 11mA on receive whereas high power BiM2H and BiM2EH consumes 25mA and 40mA on transmit respectively. Hence, current consumption will be slightly higher for the high power modem variants.
3.0 Radio Packet Modem Configuration

3.1 Entering the Configurator

The RPM2A is configured by entering the built-in software configurator. Current argument can be displayed by entering parameter / command without argument.

3.2 User Configurable Parameters

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIG</td>
<td>Display a list of the current RPM2A configuration. This will also set FLOW control to none to enable simple 3 wire serial communication.</td>
</tr>
<tr>
<td>DEFAULT</td>
<td>Set all RPM2A configuration settings to their factory default values.</td>
</tr>
<tr>
<td>RESET</td>
<td>Exit the modem and force a software reset. Any changed parameters will take effect after the modem has restarted. When exiting the configurator, the HOST device must ensure the SETUP pin is high otherwise the configurator will be re-entered after the reset.</td>
</tr>
<tr>
<td>UNIT</td>
<td>Sets the unit number. Two RPM2A modules can communicate with each other provided they have matching Unit numbers and Site codes.</td>
</tr>
<tr>
<td>SITE</td>
<td>Sets the Site address. The site number is used to distinguish between groups of operating modems. The site code is an address extension to the unit number.</td>
</tr>
<tr>
<td>ADDR</td>
<td>Updates the unit number value. This command is used for changing the unit number in RAM without updating the unit number stored in EEPROM. This enables the RPM2A to support point-to-multipoint communications. Upon using this command the configurator is exited and the modem operation is resumed. The modem is not reset when the configurator is exited.</td>
</tr>
<tr>
<td>BAUD</td>
<td>Sets the host interface baud rate. The changed baud rate will take effect after resetting the RPM2A.</td>
</tr>
<tr>
<td>THRUPT</td>
<td>Sets the on-air data throughput. Three possible settings are provided. max: sets the maximum data throughput of the RPM2A. slots: effectively reduces the on-air throughput. This opens up ‘time slots’ allowing other RPM2A pairs, operating within close proximity, equal opportunity to transmit data. slotsw: increases the ‘time slots’ even further to allow more RPM2A pairs to operate.</td>
</tr>
</tbody>
</table>

Valid range: None

Valid range: None

Valid range: None

Valid range: 0 to 15

Valid range: 0 to 7

Valid range: max, slots, slotsw
Flow

Sets the serial flow control between the host and RPM2A.

Using no flow control enables the RPM2A to be used with a 3 wire serial link (TXD, RXD, GND). Care must be taken in order to prevent overflowing the 96 byte serial receive buffer in the RPM2A.

Using hardware flow control enables the RPM2A to control the flow of serial data being received.

- **Default:** none
- **Valid range:** hw, none

Serdly

Sets the serial data receive to packet transmit delay.

When the RPM2A receives the first byte of data from the host, it starts a timer running. Either a full buffer of data to send or a timeout of this timer will allow the packet to be transmitted.

Fine tuning this delay for the baud rate the RPM2A is operating at can significantly increase throughput while reducing unnecessary transmissions.

- **Default:** 2 (x10ms)
- **Valid range:** 2 to 255 (x10ms)

Shdn

Sets the action of the Wake input.

Setting shutdown to **On** will cause the RPM2A to monitor the Wake input. When Wake is taken high the RPM2A will be forced into low power sleep mode, thus reducing current consumption. Subsequently lowering the Wake input will bring the RPM2A out of low power sleep mode.

SHDN should be set to **Off** or WAKE pin should be pulled Low when the host (DTE) cannot provide DTR control signal to wake RPM2A in a 3-wire serial interface.

- **Default:** On
- **Valid range:** on, off

Retry

Sets the number of data retry attempts.

RF interference can cause a transmitted data packet to be lost or corrupt on reception. If this happens the RPM2A will retransmit any acknowledged transfer. The transmission will be retried the specified number of times before the link to the remote unit is considered ‘lost’ and the data purged.

- **Default:** 5
- **Valid range:** 1 to 63

Strtmsg

Enables the startup message.

The startup message is enabled by default, thus giving an immediate indication of the operation of the RPM2A. The message can be disabled prior to deployment of the RPM2A module.

- **Default:** On
- **Valid range:** on, off

Ackmode

Enables transfer acknowledgements.

This function enables packet transfer acknowledgements to be returned for every outgoing packet. Packet acknowledgements aid in the delivery of error free and consistent data transfers between a pair of modems. Disabling the acknowledgements results in higher data throughput between modems, but does not protect against lost data due to RF interference. It should be disabled while using RPM2A in a broadcast mode.

- **Default:** On
- **Valid range:** on, off

Remote

Enables remote configuration.

Over-air remote configuration of a RPM2A module is possible once it has been enabled. The remote command is used to send remote configuration commands. See the following chapter for a overview of remotely configuring a RPM2A module.

- **Default:** On
- **Valid range:** on, off

Radar

Starts the radar test.

- **Parameter:** Used as a range or confidence test between RPM2A modules within the same site.
- **Unit number:** Between 0 and 15.
To configure the RPM2A the HyperTerminal should be set with the following settings.

![Serial Port settings to use RPM2A Configurator](image)

Hardware flow control should be disabled. Default baud rate of the RPM2A is 9600bps. However if the default baud rate of the RPM2A is changed then the baud rate of the HyperTerminal should be matched or DEFAULT pin should be pulled Low to force the RPM2A baud rate to 9600bps.

![RPM2A configuration using HyperTerminal](image)

User configurable parameters described in section 3.2 should be entered in the command prompt `>` followed by Carriage Return (CR) key. Then SETUP should be pulled-up to VCC and RPM2A should be RESET to exit the configurator and for the new parameters to be used by RPM2A.
4.0 Extended Radio Packet Modem Features

4.1 Throughput

The RPM2A supports three rates, max (17kbps), slots (3.6kbps) and slotsw (1.8kbps), of over-air throughput.

Max: When set to maximum and streaming data at the RPM2A, the data is sent as quick as possible. For host baud rates above 9600bps, data is transmitted continuously with minimal delay between sequential packets. When this occurs, there is effectively no airtime for another pair, operating in close proximity, to transmit without causing collisions. The maximum over-air throughput that can be achieved is 17kbps with ACK and 28kbps without ACK.

![Figure 8: RPM2A streaming data with ACK at maximum throughput](image)

In Figure 8, RS232 serial data bytes accumulated in the receive buffer is transmitted as two 10kbps bursts by transmitting RPM2A with gaps just enough to receive ACK from receiving RPM2A.

![Figure 9: RPM2A streaming data without gap for another RPM2A pair](image)

For continuous data transmission at baud rates above 9600bps (with ACK) or 19200bps (without ACK), hardware flow control should be used to prevent the host from causing receive buffer overrun errors. RPM2A will signal CTS pin to stop/allow the host depending on its Receiver Buffer level.
SLOTS: Setting the throughput to SLOTS provides a method of opening about 85ms ‘time slots’ for other RPM2A pairs operating in close proximity. The effective streaming on-air throughput between a pair of RPM2A is effectively reduced to approximately 3.6kbps (with/without ACK).

![Figure 10: RPM2A operating in slots throughput mode with ACK for each transmission](image1)

SLOTSW: This setting effectively widens the SLOTS to about 185ms, reducing the over-air throughput to approximately 1.8kbps (with/without ACK). It allows more RPM2A pairs to share the same frequency. Host should obey CTS flow control signal from RPM2A when using SLOTS or SLOTSW mode.

![Figure 11: RPM2A operating in slotsw throughput mode](image2)

Overall throughput of the RPM2A is fixed according to throughput mode selected. Effective throughput will vary according to the file transfer protocol used. ZMODEM is the most popular and fastest protocol but it still adds its own header, CRC, link control bits to the data packet being transmitted reducing the actual throughput.
4.2 Remote Configuration

Remote configuration of a RPM2A module is possible using the REMOTE command from within the configurator. The remote RPM2A unit should be on or in auto-standby mode.

Initially the REMOTE command is used to enable and disable the ability to remotely configure a module, as described in section 3.2: User Configurable Command.

Once remote configuration is enabled the REMOTE command is then used to issue configuration commands to a remote RPM2A. The format for the remote command then becomes:

REMOTE <SERIAL NUM> <COMMAND> <PARAMETER>

The <SERIAL NUMBER> of the remote RPM2A must be known in order for the remote configuration request to be executed on the appropriate RPM2A module.

The <COMMAND> to be executed can be any of the following:
- Baud 600,1200,2400,4800,9600,19200,38400,57600,115200
- Unit 0 to 15
- Site 0 to 7
- Shdn on/off
- Flow hw/none
- Serdly 2 to 255
- Retry 1 to 63
- Strtmsg on/off

The <PARAMETER> is optional, and if not specified the setting for that command is returned and displayed.

4.3 POINT-TO-MULTIPOINT

The RPM2A can be used for point-to-multipoint communications. One module must be considered to be the master, which is used to address up to 15 remote units in any one site.

During normal operation, the base unit can be set to address another unit dynamically by entering the configurator and using the ADDR command to change the unit address. Upon execution of this command, provided the parameters are correct, the configurator is exited immediately. A period (\'.\') is sent to the connected host device to indicate that the change has been registered and the RPM2A is now ready for communications to the new unit address.

ADDR is very similar to the Unit command, except that ADDR does not update the stored EEPROM unit value. As the EEPROM has a limited number of write cycles, using ADDR for addressing multiple units in a point to multipoint network is recommended. Also, the ADDR command will exit the configurator immediately, which is required to resume communications very quickly.

4.4 BROADCAST MULTIDROP

The RPM2A has a broadcast multidrop mode which provides a mechanism for building a large networks. This mode of operation is determined by the configuration command keyword ACKMODE being set to OFF. In broadcast multidrop mode, the RPM2A does not implement network layer functionality related to data packet routing, acknowledgement and retries. The connected host device should provide network layer functionality.

The site code and unit address is still used by the radio modem when working in broadcast multidrop mode. For a given multipoint network all radio modems within a group must contain the same site code and unit address.
4.5 **RADAR: DIAGNOSTIC TEST**

Built into the configurator is a diagnostic test suitable for range testing and link confidence testing. The Radar test effectively sends a small request packet to a remote unit then waits for a reply. The remote unit must not be in the configurator otherwise it will not respond.

Upon receipt of a positive response from the remote unit, a success is recorded before the process is repeated. This test will continue indefinitely until it is ended by a key press.

4.6 **Radio Packet Modem Error Handling**

The RPM2A’s radio decoder module is deliberately non bit error tolerant, i.e. no attempt is made to repair corrupt data bits. All of the redundancy in the code is directed towards error checking. For an FM radio link using short packet lengths, packets are either 100% or so grossly corrupt as to be unrecoverable. By the same reasoning, the Host is not informed or sent corrupt data since corrupt information is of little value. The RPM2A implements packet acknowledges, timeouts and re-transmission to accomplish reliable error handling.

Ordering information

<table>
<thead>
<tr>
<th>Part number</th>
<th>Supply</th>
<th>RF power</th>
<th>SMA Connector</th>
<th>SMA Antenna</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPM2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPM2A-433-17</td>
<td>5V</td>
<td>10mW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPM2A-433-17-3V</td>
<td>3V</td>
<td>10mW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPM2A-433-17-SMA</td>
<td>5V</td>
<td>10mW</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>RPM2A-433-17-3V-SMA</td>
<td>3V</td>
<td>10mW</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>RPM2A-433-17-ANT</td>
<td>5V</td>
<td>10mW</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RPM2A-433-17-3V-ANT</td>
<td>3V</td>
<td>10mW</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RPM2H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPM2H-433-17</td>
<td>5V</td>
<td>25mW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPM2H-433-17-3V</td>
<td>3V</td>
<td>25mW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPM2H-433-17-SMA</td>
<td>5V</td>
<td>25mW</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>RPM2H-433-17-3V-SMA</td>
<td>3V</td>
<td>25mW</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>RPM2H-433-17-ANT</td>
<td>5V</td>
<td>25mW</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RPM2H-433-17-3V-ANT</td>
<td>3V</td>
<td>25mW</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RPM2EH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPM2EH-433-17</td>
<td>5V</td>
<td>100mW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPM2EH-433-17-SMA</td>
<td>5V</td>
<td>100mW</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>RPM2EH-433-17-ANT</td>
<td>5V</td>
<td>100mW</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes:

1. Standard RPM2A module will be supplied with neither the connector nor antenna.
2. If an SMA (or Reverse Polarity SMA) connector or 1/4 wavelength wire antenna is soldered on the protruding PCB section for SMA connector, then the RF pin (2) should be cropped with side cutters for better RF performance.
3. If the RF output is going to be taken from the RF pin (2) to on-board antenna or connector on the host PCB (motherboard) via 50Ω microstrip, the protruding section of the RPM2A PCB can be cut along the width of the RPM2A to remove the redundant connector section.
4. RPM2A is supplied with 7mm long pins which need to be trimmed to mount the module as close as possible to the host PCB (motherboard). Ideally, the black coloured plastic spacer on the RPM2A pinheader should be touching (resting on) the host PCB.
Figure 12: Example circuit to make radio modem with DCE type RS232 interface
Copyright notice

This product data sheet is the original work and copyrighted property of Radiometrix Ltd. Reproduction in whole or in part must give clear acknowledgement to the copyright owner.

Limitation of liability

The information furnished by Radiometrix Ltd is believed to be accurate and reliable. Radiometrix Ltd reserves the right to make changes or improvements in the design, specification or manufacture of its subassembly products without notice. Radiometrix Ltd does not assume any liability arising from the application or use of any product or circuit described herein, nor for any infringements of patents or other rights of third parties which may result from the use of its products. This data sheet neither states nor implies warranty of any kind, including fitness for any particular application. These radio devices may be subject to radio interference and may not function as intended if interference is present. We do NOT recommend their use for life critical applications.

The Intrastat commodity code for all our modules is: 8542 6000

R&TTE Directive

After 7 April 2001 the manufacturer can only place finished product on the market under the provisions of the R&TTE Directive. Equipment within the scope of the R&TTE Directive may demonstrate compliance to the essential requirements specified in Article 3 of the Directive, as appropriate to the particular equipment.

Further details are available on The Office of Communications (Ofcom) web site:

http://www.ofcom.org.uk/

Information Requests
Ofcom
Riverside House
2a Southwark Bridge Road
London SE1 9HA
Tel: +44 (0)300 123 3333 or 020 7981 3040
Fax: +44 (0)20 7981 3333
information.requests@ofcom.org.uk

European Communications Office (ECO)
Peblingehus
Nansensgade 19
DK 1366 Copenhagen
Tel. +45 33896300
Fax +45 33896330
ero@ero.dk
www.ero.dk