

HNM2 500mW CAT1 Radio Modem USER MANUAL

Radiometrix Ltd

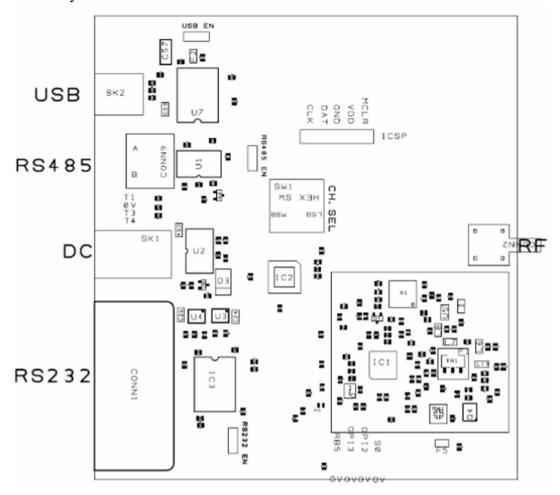
Contents

1. Introduction	3
Technical Specification:	3
2. Connection Details:	4
2.1 PCB Layout	4
2.2 Power Connections:	4
2.3 Serial Ports	5
2.4 RS485 - 2 Pole Phoenix Connector	5
2.5 LED indications	6
3.0 Programming the Module	7
3.1 Procedure to enter command Mode	7
3.2 Procedure to Access AT Commands	7
4.0. Data Communications	7
Modes of Operation:	7
4.1 Normal mode	8
4.1.1 Setup HyperTerminal for Data communication	8
4.2 Repeater Mode:	9
4.2.1 Instruction to configure Repeater mode	10
4.2.1.1 Configure transmitter module:	10
4.2.1.2 Configure receiver module:	10
4.2.1.3 configure Repeater module	11
Appendix A	144

1. Introduction

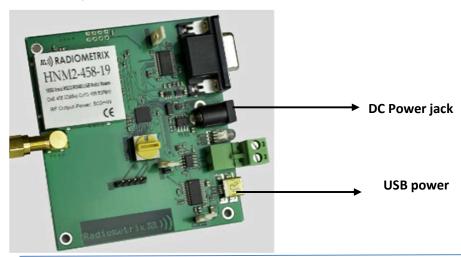
The HNM2 radio modem offers a 500mW RF output 19200 data link with RS232, RS485 or USB interface. It meets the ETSI Category 1 high performance receiver specification to be used where the operation of a SRD may have inherent safety of human life Implications

Features


- > Standard 458MHz (UK), 869MHz (EU)
- > Available from 160MHz to 915MHz
- ➤ 12.5/25kHz Narrow Band Multichannel
- > Data rates up to 19200kbps
- > ETSI EN 300 220-1 Category 1 High performance level receiver
- Point-to-Point, Point-to-Multipoint
- > Store and Forward Repeater Mode with Dual Addressing to extend operating range
- Mini USB Type B, RS232 DE9F sockets, RS485 Terminal Block and SPI interfaces
- Range Test Mode

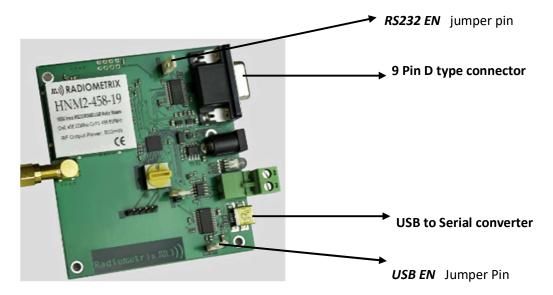
Technical Specification:

Frequency Range	CH0: 458.525, CH1: 458.550,CH15: 458.900MHz
No of manually selectable channels Using channel selector	16 (0 - 15)
Channel Spacing Frequency	25 KHz (dependent on data rate)
Modulation	2-GFSK, 4-GFSK
RF baud Rate	300, 600, 1200, 2400, 4800, 9600, 19200 bps
RF power	+27dBm (500 mW)
Data Interface	RS232, RS485, USB
Serial Data baud rate	600, 1200, 2400,4800, 9600, 19200, 38400bps.
Operating Voltage	6 Vdc - 16 Vdc


2. Connection Details:

2.1 PCB Layout

2.2 Power Connections:

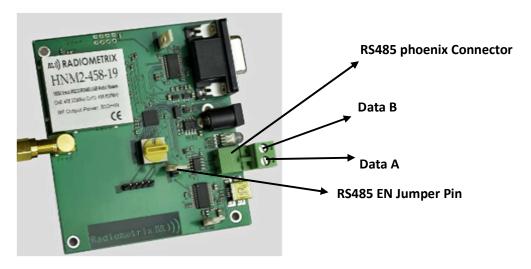

HNM2 requires DC supply voltage range from +6Vdc to +16Vdc.Power can be supplied through DC jack or mini USB port.

Radiometrix Ltd. HNM2 user manual Page | 4

2.3 Serial Ports

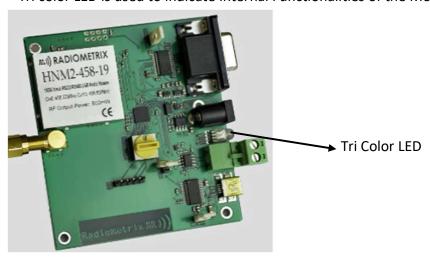
HNM2 has serial ports that provides the data connection between HNM2 Modem and host devices.

There are two ways to enable the Serial port In HNM3.


USB to serial port – To enable this connection USB EN jumper pin should be connected.

9 Pin Female D type Connector – To Enable this connection, RS232 EN pin should be connected

Note: At any time ONLY One of these connection should be used


2.4 RS485 - 2 Pole Phoenix Connector

This connector is used for R485.To enable the RS485 mode RS485 EN pins should be linked by a jumper connection.

2.5 LED indications

Tri color LED is used to indicate Internal Functionalities of the Modem

White LED	To indicate Module Power up	In normal mode, While Power-Up the modem the White LED will be ON for 2 seconds and then will go OFF In P2P mode ,White LED will be blinking 3 times and will go OFF
Red LED	To indicate Data transmission	Red LED will be blinking for Each RF Data
		Packet Transmission
Green LED	To indicate Data reception	While RF data Reception ,the Green LED will be
		blinking
Blue LED	To indicate Command mode	The Blue LED will be ON till exit from Command
		mode
Yellow LED	To indicate RXFIFO overflow	Yellow LED will be ON if RF receive FIFO error
	error	occurs.
Cyan LED	To indicate Repeater Function	If the Module configured as repeater, The Cyan
		LED will be blinking While forward the data to
		the Destination
Violet LED	To indicate Queue Full status	It will be blinking If the Internal data buffer
		becomes full

3.0 Programming the Module

This product has the feature to change the RF modem parameters. RF Parameters can be changed according to the Communication requirements. Parameters can be changed through command mode. In order to do this you need a terminal program like "Hyperterminal" or "Terraterm".

AT Commands:

The command mode is used to read and update the modem configuration registers using AT command

In command mode, the radio is inhibited (transmission and reception), excepted when using test commands.

3.1 Procedure to enter command Mode

Send "+++" sequence from HyperTerminal to enter the command mode, when entering command mode 'command mode active' message will be displayed on hyper terminal.

To exit from Command Mode, issue "ATE<CR>" sequence from HyperTerminal.

3.2 Procedure to Access AT Commands

- 1. Enter command mode
- 2. Enter the AT command of corresponding Parameter, the Parameters are listed below
- 3. Carriage return (<CR>) should be given after writing each AT commands.

Example:

To change the Frequency of RF modem

Send this ATF=458.525 <CR>

Modem will return

Freq =458.52500

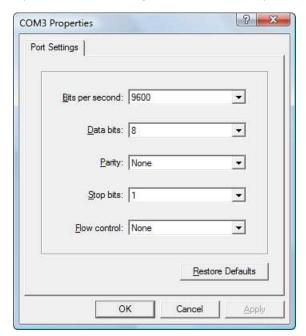
ОК

All AT commands and parameters Explained in Appendix A4.0. Data Communications

Modes of Operation:

This modem supports two modes of operations

- 1. Normal Mode
- 2. Repeater Mode

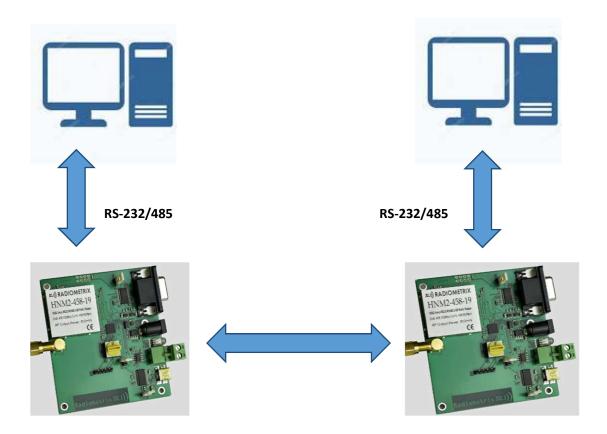

4.1 Normal mode

In normal mode of operation, this modem acts as transceiver. In this mode, there is no need to initiate addressing of the modem . The communication is always half-duplex. When the transceiver is sending a radio packet, it is not able to decode any incoming radio packet. User can transmit and receive the data through hyper terminal. By default the modem is in Normal mode

In Idle state the transceiver is waiting for Serial data on Serial port and RF data on Radio link. Once the data is detected on Serial port, the data is transferred to the RF module for RF communication. If the data is detected on RF link, it is transferred to Serial port

4.1.1 Setup HyperTerminal for Data communication

- 1. Open hyper terminal on PC
- 2. Open baud rate settings menu, Select com port and set the baud rate as 9600(Default)


3.

UART data format

Data bits - 8 bits

Stop Bit - 1 bits

Parity - None

4.2 Repeater Mode:

For Long range data transmission, we can configure the modem as repeater. In repeater Mode, We have to address the each modem with source and destination addresses.

For data communication, Modems has to be configured with three configuration settings

- 1. Transmitter Configuration
- 2. Receiver configuration
- 3. Repeater configuration

To enable this repeater mode, the mode is changed to Normal to P2P (Point to point Network) mode

Procedure to change P2P mode

Enter command mode

Send "+++" from HyperTerminal to enter the command mode, when entering command mode 'command mode active' message will be displayed on hyper terminal.

Send ATP2P = 1<CR> command

Modem will return "OK<CR>"

4.2.1 Instruction to configure Repeater mode

4.2.1.1 Configure transmitter module:

- 1. Enter command mode
- 2. Enter transmit address TX1.

Command format:

"ATTX1=12" and press enter key (<CR>), 'OK' message will be displayed as response.

3. Enter receive address RX1.

Command format:

"ATRX1=21" and press enter key (<CR>), 'OK' message will be displayed as response.

4. Exit from command mode

Command format:

"ATE" and press enter key (<CR>), 'OK 'message will be displayed as response

4.2.1.2 Configure receiver module:

1. Enter command mode

Send "+++" from HyperTerminal to enter the command mode, when entering command mode 'command mode active' message will be displayed on hyper terminal.

2. Enter transmit address TX1.

Command format:

"ATTX1=21" and press enter key, 'OK' message will be displayed as response.

3. Enter receive address RX1.

Command format:

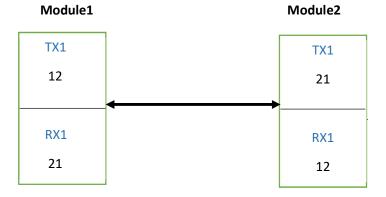
"ATRX1=12" and press enter key, 'OK' message will be displayed as response.

4. Exit from command mode

Command format:

"ATE" and press enter key, 'OK 'message will be displayed as response

5. Now both modules can send and receive data through hyper terminal


Point To Point without Repeater

<u>Transmitter function:</u>

When user send the data from hyper Terminal, transmitter will transmit the data with transmit address of TX1.

Receiver function:

Receiver receives the data only from the address entered in the RX1 address

Note: All the Addresses Range is 0 – 9999;

Point to Point With Repeater

4.2.1.3 configure Repeater module

- 1. Enter command mode
- 2. Enable the repeater mode

Command format:

"ATRPE=1" and press enter key to enable repeater mode, 'OK' message will be displayed as response and it will ask for TX1 TX2, RX1 and RX2 addresses.

3. Enter reverse transmit address TX1

Command format:

"ATTX1=21" and press enter key, 'OK' message will be displayed as response

4. Enter reverse receive address RX1

Command format:

"ATRX1=32" and press enter key, 'OK' message will be displayed as response

5. Enter Forward transmit address TX2

Command format:

"ATTX2=23" and press enter key, 'OK' message will be displayed as response

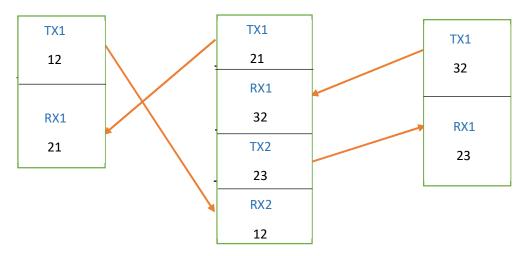
6. Enter forward receive address RX2

Command format:

"ATRX2=12" and press enter key, 'OK' message will be displayed as response

7. Exit from command mode

Command format:


"ATE" and press enter key to exit from command mode

8. Now the repeater is ready to repeat the data

Repeater function:

Modem1 Repeater Modem2

0

9. Change modem2 and RX1 address by this procedure

Enter command mode

Set TX1 "ATTX1=32"

Set RX1 "ATRX1=23"

Exit from command Mode

Now the receiver is ready to receive data

10. If the repeater receives message from modem1 TX1 (12) address, it will forward the message to the modem 2 with the transmit address of 23.

- 11. Modem 2 will receive the data, and the data will be displayed on hyper terminal
- 12. If the repeater receives message from Modem2 TX1 (32) address, it will forward the message to the modem 1 with transmit address of 21.
- 13. Modem1 will receive the data, and the data will be displayed on hyper terminal
- 14. User can view the received data on hyper terminal.
- 15. User can read the address of TX1,RX1,TX2,RX2 using AT command

Send "ATAR?" to read the address

16. User can disable the repeater function by sending repeater disable command

Enter command mode

Send "ATRPE=0" and press enter key to disable repeater mode.

Exit from command mode

17. User can view the received data on repeater's hype terminal

Appendix A

All AT commands Listed below. **Note that HNM2/LNM2H are frequencies in the 4ooMHz range and HNM3/LNM3 are in the 800-900 MHz Range.**

LNM2H/LNM3H can be configured using serial AT Commands in Inverted RS232 (UART) format at 9600bps, 8 data bites, No Parity, 1 stop bit, No Flow control at 5V TTL level.

Each command should be terminated with Enter Key / Carriage Returned (0x0D) to execute.

Parameter	AT commands	Description
Command Mode	Enter "+++" "Command mode active"	To enter command mode
	ATE <cr> OK</cr>	Save parameters and Exit Configuration Mode
	ATF? 458.525 OK	Read Center frequency of RF modem
UART baud Rate	ATU = XX Allowed baud rate Range 300,600,1200,2400,4800,9600, 19200,38400 Ex: ATU=9600 <cr> Change Terminal Baud Rate to Continue After, Use Exit 'ATE<cr>' to store baud rate permanently OK</cr></cr>	Write UART baud rate for serial Data TX and RX
	ATU? <cr> 9600 OK</cr>	Read Serial Baud Rate
RF received signal strength	ATR? RSSI value continuously displays on hyper terminal To exit from the command Send ESC(0x1B) from terminal	Read Received signal strength

Append RSSI status	ATRA =xx 1 -Enable 0 - Disable EX: ATRA=1 <cr> OK</cr>	Enable /Disable Append RSSI with Data After this command each packet received with Rssi value HELLO9C Received Packet 'HELLO' and its RSSI value 0x9C (156)
	ATRA? <cr> 1 OK</cr>	Read the Status of append RSSI
Channel Selection Mode	ATCHM =x x = 0 - Hardware Switch x= 1 - AT command mode EX: ATCHM =0 <cr> Channel Selection By Hardware OK ATCHM=1<cr> Channel Selection By AT Command OK</cr></cr>	Channel selection by AT Commands or Hardware switch(Hex switch)
	ATCHM? <cr> Channel Selection By Hardware/AT commands OK</cr>	Read channel selection mode
Channel Selection	ATCH=xx xx- channel no (0 to 15) EX: ATCH = 2 <cr> Channel 2 is selected OK</cr>	Write channel no from (0 to15)
	ATCH? <cr> channel 2 is selected OK</cr>	Read current channel no

	ATC	
	ATC= xx,yyy.yyy	
	xx – channel no (00 to 15)	
	yyy.yyy –frequency	Write frequency for the
	433.xxx - Band	corresponding Channel
	868.xxx - Band	
	164.xxx - Band	
	Ex:	
	ATC=01,458.12345 <cr></cr>	
	OK	
	ATC? <cr></cr>	
Channel and Frequency	0 – 458.52500	
Chamier and Frequency	1 - 458.12345	
		Band and all all and all for any and
	2 - 458.57500	Read each channel frequency
	15-458.90000	
	ОК	
	ATRD =xx	
	xx –RF baud rate	Write RF baud rate
	RF baud Rate-	
	1200,2400,4800,9600,19200	19200 -4 level GFSK 25kHz
	1200,2400,4000,3000,13200	bandwidth 5kHz Deviation
	EV.	
	EX:	(Default)
		9600 - 4 level GFSK 25kHz
	ATRD=1200 <cr></cr>	bandwidth 5kHz Deviation
	OK	
		4800 - 2 level GFSK 20kHz
		bandwidth 4kHz Deviation
RF baud Rate		
		2400- 2 level GFSK 12.5kHz
		bandwidth 4kHz Deviation
		1200 -2 level GFSK 12.5kHz
		bandwidth 4kHz Deviation
		Sanawiath Title Deviation
		600 - 2 level GFSK 12.5kHz
		bandwidth 4kHz Deviation
		300 - 2 level GFSK 12.5kHz
		bandwidth 4kHz Deviation
		Reducing RF Baud Rate
		increases Receive sensitivity,
		hence operating range.
		L

	ATRD? <cr></cr>	Read RF baud rate
	1200	
	OK	
	ATPER <cr></cr>	
	Good=1,Bad=0	
Packer Error Rate		Read Packet error status
	It returns No of good and bad packet	
	Press "ESC" to exit from this mode	
	ATFCD =x	Enable/Disable UART hardware
	X - 0 - Disable	flow control (CTS/RTS)
UART	X - 1 - Enable	
Hardware Flow Control	EX:	
	ATFCD =1 <cr></cr>	
	OK	
	ATFCD? <cr></cr>	Read current status of flow
	1	control
	ОК	
	ATRG = xx	
	xx - mode	check the RF modem
	0 - Range Tx	communication Range
	1 - Range Rx	
	2- Range Master	
	3- Range Slave	It can be used for site survey
		and range testing.
	Press "ESC" to exit from Range test	
	mode	
Danas Tast	170.0	
Range Test	ATRG=0 <cr></cr>	Transmitter sends packet every
	Range test Tx started	500ms and prints "Tx succeed"
	ATRG=1 <cr></cr>	Acts as receiver, if good packet
	Range test Rx started	received prints "Rx succeed"
	ATRG=2 <cr></cr>	Bi directional communication
	Range test Master started	acts as master
		Transmits to Slave and displays
		if valid packet is received from
		Slave

	ATRG=3 <cr></cr>	Bi directional communication
	Range test slave started	acts as Slave
	nunge test slave started	Displays if valid packet is
		received from Master, transmits
		back to Master
	ATTX1=xx	Write Transmitter 1address for
	xx - 4 digit address	Repeater mode
	EX:	
	ATTX1=21 <cr></cr>	
	Response	In Dual Addressing Mode, This
Transmitter 1 address		address will be accept by next
	ATX1=21	repeater(RX1 or RX2/receiver
	ARX1=XX	(Receiver must have this
	ATX2=XX	address in RX1)
	ARX2=XX	
	No of repeater =xx	
	Repeater disabled/Enabled	
	P2P mode enabled/disabled	
	OK <cr></cr>	
	ATRX1=xx	Write Receiver 1 address for
	xx - 4 digit address	Repeater mode
	EX:	·
	ATRX1=32 <cr></cr>	
Receiver 1 Address	Response	
	·	In Dual addressing mode ,This
	ATX1=21	address will be the transmit
	ARX1=32	address of next
	ATX2=XX	repeater(TX1)(transmitter must
	ARX2=XX	have this address in transmit
	No of repeater =xx	address (TX1)
	Repeater disabled/Enabled	dudiess (TAI)
	P2P mode enabled/disabled	
	OK	
	ATTX2 =xx	Write Transmitter 2 address for
	xx - 4 digit address	Repeater mode
	EX:	
Torrespondence of the	ATTX2=23 <cr></cr>	In dead adds to the training
Transmitter 2 address	Barrage	In dual addressing, this address
	Response	will be the receive address of
	1774 24	next repeater(RX2)
	ATX1=21	
	ARX1=32	
İ		
	ATX2=23	
	ATX2=23 ARX2=XX	
	ATX2=23 ARX2=XX No of repeater =xx	
	ATX2=23 ARX2=XX	

	ОК	
	ATRX2=xx	Write Receiver 2 address for
	xx - 4 digit address	Repeater mode
	EX:	
	ATRX2=12 <cr></cr>	
Receiver 2 Address	Response	In dual addressing ,this address
	ATX1=21	will be the transmit address of
	ARX1=32	transmitter(TX1)/repeater(TX2)
	ATX2=23	
	ARX2=12	
	No of repeater =xx	
	Repeater disabled/Enabled	
	P2P mode enabled/disabled	
	ОК	
	ATP2P=xx	
	1 – Enable 0 – disable	Enable/Disable P2P mode
P2P mode	ATP2P=1	
	ОК	
	ATAR? <cr></cr>	
	It will return	
	Transmitter 1 address	
	Transmitter 2 address	
P2P parameter	Receiver 1 Address	Read all P2P parameters
•	Receiver 2 Address	·
	No of repeaters	
	Repeater status	
	P2P mode status	
	ATX1 = xx	
	ARX1 =xx	
	ATX2 = xx	
	ARX2 =xx	
	No of repeater =xx	
	Repeater Enabled	
	P2P mode Enabled	
	ATRPE=xx	Enable/Disable repeater mode
Repeater Mode	1 –Enable 0 – Disable	in P2P communication
	ATRPE =1 <cr></cr>	
	ОК	
	ATNOR =xx	Write no of repeaters between
No of repeaters	No of Repeaters should be entered in	source and destination
	transmitter only	
	ATNOR=2 <cr></cr>	
	ОК	

Unicast/Broadcast Transmission	ATDEU=xx xx -4 digit address	Write Address Of Destination for Unicast transmission. In this unicast transmission User can change the unicast address dynamically without storing in eeprom
	ATDEU=FF	Initiate the Broadcast Transmission
	ATFACT <cr> OK ATDEF?<cr></cr></cr>	Restore RF factory default settings
Factory Default settings	Channel = 0 RF Frequency = 458.52500 Packet length = Variable Packet Length mode Rssi Append Status = 0 Uart Baud Rate = 9600 RF Power = 15 RF Modulation = 4-GFSK RF BandWidth = 25000 RF Channel Spacing = 25000 Manchester State = 0 Uart Flow Control = 0 Packet CCA Threshold = 0 Deviation = 5000 Data whitening Enable = 1 Rssi_Offset = -107 dBm OK	Display RF Default settings on HyperTerminal
Firmware version	ATV? <cr> VER_3.0.31.0 OK</cr>	Read firmware version

Radiometrix Ltd

Hartcran House 231 Kenton Lane Harrow, Middlesex HA3 8RP ENGLAND

Tel: +44 (0) 20 8909 9595 Fax: +44 (0) 20 8909 2233 sales@radiometrix.com www.radiometrix.com

Copyright notice

This product data sheet is the original work and copyrighted property of Radiometrix Ltd. Reproduction in whole or in part must give clear acknowledgement to the copyright owner.

Limitation of liability

The information furnished by Radiometrix Ltd is believed to be accurate and reliable. Radiometrix Ltd reserves the right to make changes or improvements in the design, specification or manufacture of its subassembly products without notice. Radiometrix Ltd does not assume any liability arising from the application or use of any product or circuit described herein, nor for any infringements of patents or other rights of third parties which may result from the use of its products. This data sheet neither states nor implies warranty of any kind, including fitness for any particular application. These radio devices may be subject to radio interference and may not function as intended if interference is present. We do NOT recommend their use for life critical applications.

The Intrastat commodity code for all our modules is: 8542 6000

R&TTE Directive

After 7 April 2001 the manufacturer can only place finished product on the market under the provisions of the R&TTE Directive. Equipment within the scope of the R&TTE Directive may demonstrate compliance to the essential requirements specified in Article 3 of the Directive, as appropriate to the particular equipment. Further details are available on The Office of Communications (Ofcom) web site:

http://www.ofcom.org.uk/radiocomms/ifi/

Information Requests Ofcom Riverside House

2a Southwark Bridge Road London SE1 9HA

Tel: +44 (0)845 456 3000 or 020 7981

3040

Fax: +44 (0) 20 7981 3333

information.requests@ofcom.org.uk

European Radiocommunications Office (ERO)

Peblingehus Nansensgade 19 DK 1366 Copenhagen Tel. +45 33896300 Fax +45 33896330

ero@ero.dk www.ero.dk